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1 Introduction

Tachyon condensation has long been an interesting aspect of D-brane physics (for a com-

prehensive review see [1]). Study of the dynamics of open string tachyons has provided a

fertile arena for studying various aspects of non-perturbative string theory. Such tachyons

arise quite naturally in the open string spectrum when one considers non-BPS D-branes

in type IIA or IIB string theories. A growing body of research has developed in open

string field theory (for a review see [2] or [3, 4] for more recent works) boundary string

field theory, (BSFT) [5–11] and various effective actions around the tachyon vacuum [12–

16] to demonstrate Sen’s results [17–21] concerning the fate of the open string vacuum in

the presence of tachyons. One particularly interesting aspect of tachyon dynamics that is

captured by the various effective descriptions is the existence of solitonic configurations

of the tachyon field [22], including singular tachyon kink profiles [23–26] which describe

codimension one BPS branes as well as more exotic objects such as vortex solutions in

brane-antibrane systems.

In [23], the world-volume theory of the singular kink soliton solution (suitably regu-

larized) where a single real tachyon field ‘condenses’ on a single non-BPS D-brane in a

flat background was investigated using the effective Dirac-Born-Infeld (DBI) framework.

Remarkably, it was shown that the effective theory of fluctuations about the tachyon kink

profile, that depends only on a single spatial world-volume coordinate, are precisely those

of a codimension one BPS brane. Furthermore, it was also shown that in brane-antibrane

systems, in which a single complex tachyon field is present, vortex solutions to the equations

of motion exist, that naturally depend on two spatial worldvolume coordinates. Analysis

of the fluctuations in this case show that they describe a codimension two BPS D-brane.
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Monopole solutions in certain truncations of tachyon models have also been found and

initial investigations suggest that the corresponding effective theory of fluctuations about

this background correspond to codimension three BPS D-branes [27].

In this paper we wish to investigate the process of tachyon condensation starting from

the effective description of two coincident non-BPS D9-branes as proposed by Garousi

in [12]. This theory describes a non-abelian version of the DBI action in which the tachyon

field transforms in the adjoint representation of the U(2) gauge symmetry of the coincident

non-BPS D9-brane world volume action. In the original construction of this action and its

generalization to coincident non-BPS Dp-branes, a standard trace prescription (which we

denote as Tr) was taken over the gauge indices. Another prescription, motivated by string

scattering calculations (at least to low orders in α′ [28, 29]) is to take the symmetrized

trace (which we denote by Str) over gauge indices. In both cases the expression being

traced over is the same but the Str prescription results in significantly more complicated

terms in the action compared to Tr.

The effective theory of coincident non-BPS D9-branes is the simplest example of a

multiple non-BPS brane action since there are no matrix valued coordinate fields present

perpendicular to the branes. We shall show that singular tachyon profiles exist which can

be regularized in a way that preserves the U(2) symmetry. We will see that studying the

most general fluctuations about this profile yields precisely the non-abelian DBI action

of two coincident D8-branes. The only caveat is that our proof relies on assuming the

standard Tr as opposed to the Str prescription for tracing over gauge indices in the DBI

action of both the non-abelian non-BPS D9-brane action and the non-abelian D8-brane

action. Whilst it is possible that tachyon condensation in the non-BPS action using Str

could lead to the Str form of the action for two coincident D8-branes [28, 29], the exact

mechanism for this to happen seems beyond a straightforward extension of the method Sen

used in the case of a single non-BPS brane [23]. In this sense the Str prescription presents

a challenge for non-abelian tachyon condensation and deserves further investigation.

As a simple check of the non-abelian tachyon condensation we also consider the

case of non-abelian tachyon kinks where the U(2) symmetry is spontaneously broken to

U(1) ⊗ U(1). The resulting effective theory of fluctuations is shown to lead to the sum of

two DBI actions of separate BPS D8-branes, as expected.

The structure of the paper is as follows. In section 2 we review and motivate the non-

abelian DBI action of coincident non-BPS D9-branes. In section 3 we study regularized kink

profiles in the matrix valued tachyon field that preserve the U(2) symmetry and derive the

effective world volume theory of its fluctuations. In this section we also discuss the issues of

Tr vs Str prescriptions and why the latter seems problematic as far as tachyon condensation

is concerned. In section 4 we extend these results to kink profiles that spontaneously break

U(2) → U(1) ⊗ U(1). Finally in section 5 we end with some conclusions.

2 Non-BPS D9-branes effective action

In this section we shall introduce an effective action for the coincident non-BPS D9-brane

pair. This system is unstable and it contains a tachyon in its spectrum, in particular,

around the maximum of the tachyon potential, the theory contains a U(2) gauge field and
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four tachyon states represented by a 2×2 hermitian matrix-valued scalar field transforming

in the adjoint representation of the gauge group.

To arrive at an effective action for this system, we first consider the effective action

of a Dp-anti-Dp-brane pair proposed in [23]. In this case, the gauge group is U(1) × U(1)

and so there are two massless gauge fields A
(1)
µ and A

(2)
µ , a complex tachyon field T and

scalar fields Y I
(1), Y I

(2) corresponding to the transverse coordinate of individual branes. In

particular, the action reads

S = −
∫

dp+1xV
(

T, Y I
(1) − Y I

(2)

)(√

−detG(1) +
√

−detG(2)

)

(2.1)

where

G(i)µν = ηµν + 2πα′F (i)
µν + ∂µY I

(i)∂µY I
(i) + πα′(DµT )∗(DνT ) + πα′(DνT )∗(DµT ) . (2.2)

This action has the nice property of admitting a vortex solution whose world volume action

is given by the DBI action of a stable D(p − 2)-brane [23].

In [20, 30] it has been proposed that the effective action of the Dp-anti-Dp pair can be

derived from the effective action of two non-BPS Dp-branes by projecting it with (−1)FL

where FL is the spacetime left-handed fermion number. In particular, in the case of coin-

cident D9-anti-D9-branes, the action (2.1) can be derived from the following action [16]:

S =−Tr

∫

d10xV (T )e−φ
√

−det (gµν12+Bµν12+πα′(DµTDνT +DνTDµT )+2πα′Fµν)

(2.3)

It is this effective action that we are going to use in order to construct the non-abelian kink

solution. In eq. (2.3), gµν , Bµν and φ are respectively the spacetime metric, the antisymmet-

ric Kalb-Ramond tensor and dilaton fields whereas 12 is the 2×2 unit matrix. The covariant

derivative is defined to be DµT = ∂µT −i[Aµ, T ] and the field strength takes the usual form

Fµν = ∂µAν−∂νAµ−i[Aµ, Aν ]. The tachyon kinetic term has been written in a symmetric

form to make the integrand a Hermitian matrix [16]. V (T ) is the tachyon potential and

although its exact form is still unknown, there are different proposals in the literature. For

instance, the one which is consistent with S-matrix element calculation is given by [31]

V (T ) = T9

(

1 + πα′m2T 2 +
1

2
(πα′m2T 2)2 + O(T 6)

)

(2.4)

with T9 the tension of the D9-brane and m2 = − 1
2α′ the tachyon mass. The one given by

boundary string field theory (BSFT) computations is [10, 11]

V (T ) = T9 e−πα′m2 T 2

. (2.5)

In particular, the potential (2.4) can be obtained from (2.5) by expanding the latter

around the tachyonic vacuum, T = 0. Henceforth, we shall not be interested in any

specific form of the tachyon potential and, following [23], we shall only assume that

• V (T ) is symmetric under T → −T ,

• V (T ) has a maximum at T = 0 and its minima are at T = ±∞ where it vanishes.

– 3 –
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Before concluding this section, let us mention that in [16] another form of the effective

action for a coincident non-BPS D9-brane pair has been proposed. It is given in terms of

the symmetrized trace1 [28, 29]

S = −Str

∫

d10xV (T )e−φ
√

−det (gµν12 + Bµν12 + 2πα′DµTDνT + 2πα′Fµν) (2.6)

Various couplings in this action are consistent with the appropriate disk level S-matrix

elements in string theory. In the above action the Str prescription means specifically that

one has to first symmetrize over all orderings of terms like Fµν ,DµT and also individual T

that appear in the potential V (T ). The Tr or Str forms of the action are thus very different

when one has carried out the individual symmetrizations mentioned above. As we discussed

before, by projecting this action with (−1)FL one can obtain the effective action of a D9-

anti-D9-brane pair. However, for this action there are no known solutions corresponding

to a vortex whose world volume is given by the DBI action of a stable D7-brane.

3 Non Abelian kink

To simplify our calculations we set Bµν = 0, gµν = ηµν = (−1, 1, . . . , 1) and take a constant

dilaton φ consistent with the flat background. We also set the gauge fields to zero. The

latter will be reintroduced when we consider fluctuations around the kink solution.

3.1 Energy-momentum tensor and equations of motion

In this section we shall compute the energy-momentum tensor and the equations of motion

associated with the actions (2.3) and (2.6). In particular the energy-momentum tensor

associated with the action (2.3) is given by

Tµν = −Tr V (T )
√
−detG G−1

µν (3.1)

where we defined

Gµν ≡ ηµν + Bµν + πα′(DµTDνT + DνTDµT ) + 2πα′Fµν . (3.2)

A similar expression holds for the symmetrized trace form of the action but with Tr replaced

by Str.

Following Sen [23], we show that the kink solution consistent with the energy-

momentum conservation and the e.o.m is given by

T (x) = f

(

a
x√
α′

)12 = f

(

a
x√
α′
12

)

(3.3)

with gauge fields set to zero, x ≡ x9 a direction longitudinal to the system and a an arbitrary

dimensionless constant that we should take to infinity at the end. The function f(u) can

be any real function with the property that f(u → ±∞) → ±∞ and f ′(u) > 0, ∀u. As a

1Str(M1 . . . Mn) ≡ Tr
P

σ
M1 . . . Mn where

P

σ
is a sum over all permutations of matrices in M1 . . . Mn

divided by n!.
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matter of fact, eq. (3.3) is a way of regularizing the tachyon singular solution which comes

from the energy-momentum conservation condition ∂xTxx = 0: the latter implies that

Txx = −Tr
V (T )√

1 + 2πα′∂xT∂xT
(3.4)

must be independent of x. Therefore, since for x → ∞ we have that Txx → 0 then2

Txx = 0, ∀x. We conclude that T is singular, namely

T = ±∞ and/or ∂xT = ±∞ ∀x (3.5)

and this singularity is regularized by taking the constant a in (3.3) to infinity. However,

one can also show that this kink solution has finite energy density regardless of the way

of regularizing the singularity.

Let’s compute now the equation of motion for the tachyon (keeping the gauge fields

non-zero), in particular, varying eq. (3.3) w.r.t. T we obtain:

πα′Dρ

(

V (T )
√
−detG (G−1)µν(DνTδρ

µ + DµTδρ
ν)
)

− ∂V (T )

∂T

√
−detG = 0 (3.6)

where we use the properties of the trace to permute all the various sources of δT factors

that arise in the variation of the action. When one uses the symmetrized trace form of the

action (2.6) the equations of motion for T are:

Σσ

[

πα′Dρ

(

V (T )
√
−detG (G−1)µν(DνTδρ

µ + DµTδρ
ν)
)

− ∂V (T )

∂T

√
−detG

]

= 0 (3.7)

where
∑

σ accounts for all symmetrical permutations of the matrices inside the squared

brackets in the previous expression.

We now verify that the kink solution eq. (3.3) satisfy the equation of motions (3.6) in

the a → ∞ limit. In this case:

Gµν = ηµν + 2πα′∂µT∂νT =













−1 0 . . . 0

0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 (1 + 2a2π(f
′

)2)













⊗ 12 (3.8)

where ′ denotes differentiation w.r.t. the dimensionless argument of f . It follows that

− detG = 1 + 2a2π(f
′

)2 ≈ 2a2π(f
′

)2 (3.9)

and

(G−1)µν =

[

ηµν +

(

1

1 + 2a2π(f ′)2
− 1

)

δµ
xδν

x

]

⊗ 12 . (3.10)

2Recall that for a kink solution limx→∞ T → ∞ and we assumed that the tachyon potential is

zero at infinity.
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Substituting eqs. (3.3), (3.9) and (3.10) into eq. (3.6) one obtains

2πα′∂x

(

V (T )
√
−detG (G−1)xx∂xT

)

− ∂V (T )

∂T

√
−detG

= 2π
√

α′∂x

(

V (T )
1

√

1 + 2a2π(f ′)2
af

′

)

− ∂V (T )

∂T

√

1 + 2a2π(f
′

)2

≈
√

2πα′∂xV (T ) −
√

2πaf
′ ∂V (T )

∂T
= 0 (3.11)

where in the last step we have taken the large a limit. Notice that since the solution (3.3)

is such that both T and DxT commute (indeed they are both proportional to the identity

in group space), then it is equally a solution of the equations of motion derived from the

Str procedure eq. (2.6) in the background in which the gauge fields are set to zero.

3.2 Study of the fluctuations

We proceed to study the fluctuations around the solution (3.3) which preserve the U(2)

symmetry. These fluctuations correspond just to shifts in the argument of the function

f
(

a x√
α′

)

. The analysis is similar to [23], however, we now have two copies of the usual

abelian tachyon profile filling out the diagonal elements of the matrix tachyon field, thus

representing the two coincident D8-branes.

3.2.1 Warmup: T = f
(

a√
α′

(x − t(ξ))
)12

As a warmup calculation we consider a fluctuation of the type

T = f

(

a√
α′

(x1 − t(ξ))

)12 , (3.12)

where ξα denotes all the coordinates tangential to the kink world-volume and t(ξ) the field

associated with the translational zero mode of the kink. Taking the group trace, Tr or

Str, in the action (2.3) or (2.6) in the case where the tachyon profile and its derivatives

are proportional to the identity as in eq. (3.12), will thus give us two identical D8-brane

actions.1 Indeed, for the fluctuation (3.12),

− detG = 1 + 2πa2(f ′)2 (1 + ηαβ∂αt∂βt) (3.13)

and we obtain

S = −Tr

∫

d9ξ dxV (f)
√

2πaf ′
√

1 + ηαβ∂αt∂βt

= −2
√

2πa

∫

d9ξ dxV (f)f ′
√

1 + ηαβ∂αt∂βt (3.14)

and by a substitution y = f
(

a√
α′

(x − t(ξ))
)

one finds

S = −2
√

2πα′
∫ ∞

−∞
dyV (y)

∫

d9ξ
√

1 + ηαβ∂αt∂βt (3.15)

1Note that in the determinant under the square root the symmetric DµTDνT term is automatically

diagonalized in the gauge indices.
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which upon the identification T8 =
√

2πα′ ∫∞
−∞ dyV (y) we recognize as the action describing

two identical D8-branes (with no separation) with a single translational fluctuation mode

t(ξ) turned on.

3.2.2 T = f
(

a√
α′

(x12 − ta(ξ)σa)
)

Of course it is well known that the full DBI action for coincident BPS D8-branes should

involve a nonabelian theory in which the single coordinate perpendicular to the D8-brane

worldvolume is a U(2) matrix-valued field and the resulting action has local U(2) gauge

invariance. Thus we would like to show how such an action appears by looking at the most

general fluctuations around our original kink solution T = f
(

a√
α′

x
)12. To this end, let

us keep the fluctuations in the gauge field zero for the time being and consider fluctuations

of the tachyon profile of the form:

T = f

(

a√
α′

(x12 − ta(ξ)σa)

)

(3.16)

where σa = (σ0 = 12, σ
i), σi being the Pauli matrices and we should regard f as a matrix-

valued application expressed as an infinite power series of its argument. The above ansatz

for the fluctuations is a natural non-abelian generalization of the one that Sen used to

describe fluctuations of regularized tachyon kink in the abelian case [23].

If in the first instance, we make use of the quadratic approximation for the determinant:

detGµν = 12 + 2πα
′

∂µT∂µT + O(α
′2) (3.17)

the action in the large a limit becomes

S = −Tr

∫

d10xV (f)
√

2πa
√

f ′2
√12 + ∂αt∂αt (3.18)

where t is the U(2) matrix taσa.

In obtaining the above we have implicitly assumed that ∂αf = − a√
α′

f ′∂αt while

∂x f = a√
α′

f ′ is identically the case since the dependence on x is via the unit ma-

trix 12 in f . In fact, there is a subtlety associated with the former relation: since ∂αt and t

do not commute in general, there is an ordering issue that means that for general functions

f , differentiating w.r.t. ξα one cannot simply use the chain rule and express the result as

− a√
α′

f ′∂αt. There will be various symmetric ordering of ∂αt and t that spoil this.

However there is at least one example, namely when f(u) is linear in its argument

(with positive coefficient so that f ′ > 0 everywhere as required) where the chain rule will

hold and no ordering problems occur when differentiating.

The linear form of f has another interesting feature. If we had started with the Str

form of the action, then as discussed above this implies symmetrization w.r.t. Fµν ,DµT

and T . For linear f we see that it follows that this Tr procedure immediately implies a

similar Str procedure where we replace T with t. This is exactly what we would expect if

we require that the Str procedure is the one that correctly describes coincident D8-branes

with t the single transverse coordinate to the world volume.
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Finally it is interesting to observe that as pointed out in [23], the linear tachyon profile

seems to play and important role in the BSFT description of tachyon vortex solutions

discussed in [10, 11].

For all these reasons the linear form of f seems to be singled out as being special. For

now we will leave f in its generic form but bear in mind these issues.

The action (3.18) looks of the right form, i.e., it is a non-abelian DBI action (though

with the gauge field fluctuations yet to be included). However, one faces taking the square

root of the function f ′2 which is matrix valued and is thus non trivial. One has to diagonal-

ize the matrix f first in order to take its square root and obtain a closed form expression.

The terms inside the second square root part of the action are proportional to the identity

and so we can diagonalize them by a U(2) transformation directly:

S = −
√

2πaTr

∫

d10xV (f)
√

f ′2
√12 + ∂αt∂αt

= −
√

2πaTr

∫

d10xU † V (f)U U †
√

f ′2U
√12 + ∂αt∂αt

= −
√

2πaTr

∫

d10xV (U †fU)
√

U †f ′2U
√12 + ∂αt∂αt . (3.19)

Now,

U †f

(

a√
α′

(x12 + ta(ξ)σa)

)

U = f

(

U † a√
α′

(x12 + taσa)U

)

= f

(

a√
α′

(

(x + t0)12 + U †tiσiU
)

)

= f

(

a√
α′

(

(x + t0)12 +
√

tataσ3

)

)

. (3.20)

This diagonalization then describes a matrix of the form:

U †f

(

a√
α′

(x12 + ta(ξ)σa)

)

U =





f
(

a√
α′

(x + t0 +
√

tata)
)

0

0 f
(

a√
α′

(x + t0 −
√

tata)
)





≡ D(f1, f2) (3.21)

where

f1 = f

(

a√
α′

(

x + t0 +
√

tata
)

)

,

f2 = f

(

a√
α′

(

x + t0 −
√

tata
)

)

.

We also note that the matrix used to diagonalize f only depends on the variables ti(ξ)

which means that U †f ′U = (U †fU)′ and so the action (3.19) becomes

S = −
√

2πaTr

∫

d10xD(V (f1), V (f2))D(f ′
1, f

′
2)
√12 + ∂αt∂αt

= −
√

2πaTr

∫

d10xD(V (f1)f
′
1, V (f2)f

′
2)
√12 + ∂αt∂αt . (3.22)
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Substituting for the variables y = f1 and z = f2 we obtain the generalization of Sen’s

procedure for the non-abelian case:

S = −
√

2πα′Tr

∫

d9xD
(∫ ∞

−∞
dyV (y) ,

∫ ∞

−∞
dzV (z)

)

√12 + ∂αt∂αt

= −T8 Tr

∫

d9x
√12 + ∂αt∂αt (3.23)

which we recognize as the non-abelian DBI action for the coincident D8-branes (with gauge

fields set to zero) upon identifying the tension T8 =
√

2πα′ ∫∞
−∞ dyV (y). In order to be sure

that in the a → ∞ limit one really is in the vacuum of the theory we must look at the poten-

tial for the matrix form of T : the requirement that V (f(±∞)) = 0 is enough to ensure that.

Now one might also try and arrive at the Str form of the above action, by starting

with the Str form of the tachyon action for non-BPS D9-branes (2.6). The terms inside the

square root part of the action are diagonal in U(2) space and so one can imagine expanding

out the square root factor in a power series and them symmetrizing over terms involving

∂αT and T in V (T ). The problem one encounters then is that integrating over dx by making

the change of variables as above does not look feasible due to the non-commutation between

f and ∂αt terms. That is, even using the cyclic properties of Tr, terms obtained through

Str cannot be factorized into terms involving just powers of f times those involving ∂αt.

Therefore, it seems that a straightforward generalization of Sen’s procedure to show that

non-abelian tachyon condensation via kink solitons in coincident non-BPS brane theories

gives rise to coincident Dp-branes is only possible in the Tr prescription rather than Str.

It is interesting to see here a parallel to the problem of Str vs Tr prescriptions in trying

to realize vortex (as opposed to kink) solutions in brane-antibrane systems obtained from

coincident non-BPS D9-branes [16].

Working within the Tr prescription, let us now proceed to include the gauge field

fluctuations and to go beyond the quadratic approximation of the determinant used before,

to include all higher order terms. We take the following ansatz for the gauge fields [23]:

Ax(x, ξ) = 0 , Aα(x, ξ) = a(ξ)aασa , (3.24)

Now let us pause briefly to comment on the action of the covariant derivative Dα on the

function f appearing in the ansatz eq. (3.16) for the tachyon kink. Just as we mentioned

earlier when discussing the action of ∂α on f , the commutator terms [Aα, f ] cannot, in

general, easily be expressed in terms of f ′ and [Aα, t] which is what we would have hoped if

we are to promote the action eq. (3.23) to one that is locally U(2) invariant. There are again

ordering issues arising form the non-commutativity of [Aα, t] and t. Taking f(u) linear in

its argument avoids this as before. For now let us just keep f in our expressions but have in

mind that it is likely to be constrained to be linear if we assume that DαT = − a√
α′

f ′Dαt.

We can proceed with calculating the determinant of the matrix in the action using the

ansatz (3.16) for the tachyon field and (3.24) for the gauge fields. We obtain

Gxx = (1 + 2πa2f ′2) (3.25)

Gαx = −2πa2f ′2Dαt (3.26)

Gαβ = πa2f ′2(DαtDβt + DβtDαt) + aαβ (3.27)

– 9 –
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where aαβ = ηαβ + 2πα′Fαβ . Now we can make use of Sen’s trick [23] of adding rows and

columns of the same matrix to simplify the computation of the determinant. In particular,

we have

Ĝµβ = GµβI2 +
1

2
GµxDβt +

1

2
DβtGµx (3.28)

Ĝµx = Gµx (3.29)

and finally:

G̃αν = ĜανI2 + ĜxνDαt (3.30)

G̃xν = Ĝxν (3.31)

from which we obtain

G̃xx = (1 + 2πa2f ′2)12, G̃xα = G̃αx = Dαt(ξ)aσa, G̃αβ = ãαβ (3.32)

where

ãαβ = aαβ + Dαta(ξ)Dβtb(ξ)σaσb . (3.33)

This means that overall

det(G̃µν) = det(Gµν) = 2πa2f ′2det(ãαβ) + O

(

1

a2

)

. (3.34)

The last equation is precisely the generalization of the result Sen obtained to the case of

local U(2) gauge covariant quantities. Note that in the above manipulations we have taken

f ′ to commute through expressions involving U(2) matrices. For general f this would not

be the case but for linear f , f ′ is simply proportional to the 2× 2 identity matrix as noted

earlier, so this is justified.

We can now substitute this result into the action to obtain

S = −
√

2πaTr

∫

d10xD(V (f1)f
′
1, V (f2)f

′
2)
√

−det(ãαβ) (3.35)

which is the full non-abelian DBI action for two coincident D8-branes (using the Tr pre-

scription) once the usual parameter substitutions are performed and the resulting integral

over x identified with the D8-brane tension T8:

S = −T8 Tr

∫

d9x
√

−det(ãαβ) . (3.36)

Now one should also show, as a further check, that the solutions of the equations of

motion arising from the action (3.36) coincide with the solutions as derived from the original

coincident non-BPS D9-brane action (2.3), upon using the non-abelian tachyon profile

given in eq. (3.16). This check was done explicitly by Sen in [23] in the case of tachyon

condensation on a single non-BPS Dp-brane. The calculation in our case would follow

quite closely that of Sen, just extended to the non-abelian case relevant to two coincident

D-branes. The main points of the proof use the property that Dαf = − a√
α′

f ′Dαt used

earlier and the approximate relation det(Gµν) = 2πa2f ′2det(ãαβ) + O
(

1
a2

)

. Details will be

presented elsewhere [? ].
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4 Breaking U(2) to U(1) ⊗ U(1)

As further check on our generalized Sen ansatz eq. (3.16), we can consider modifying

the argument of f so that the corresponding kink solution breaks U(2) symmetry and

thus should describe a pair of separated D8-branes after condensation. This amounts to

allowing a vacuum expectation value to one of the U(2) adjoint fields ti. In particular,

we set t(ξ) → t(ξ) + cσ3, where c denotes a constant v.e.v. related to the separation

of the two D8-branes along their single transverse direction. In this case we expect to

break the U(2) invariance of the theory down to U(1) ⊗ U(1). The resulting action of

fluctuations about this vacuum configuration should split into two abelian DBI actions, i.e.,

two distinct determinant terms each carrying a single U(1) gauge field and perpendicular

scalar fluctuation field, that describe the separate D8-branes.

We start by introducing the v.e.v. c and obtain a modification of eq. (3.33) due to this

shift: in particular

G̃αβ = ãαβ = aαβ + ∂αt∂βt − i∂αt[Aβ, t] − i[Aα, t]∂βt − [Aα, t][Aβ , t]

−ic ∂αt [Aβ, σ3] − ic[Aα, σ3]∂βt − c[Aα, t][Aβ , σ3] − c[Aα, σ3][Aβ , t]

−c2[Aα, σ3][Aβ, σ3] (4.1)

where the covariant derivatives appearing in eq. (3.33) have been expanded out explicitly.

To proceed we make use of a different parametrization of t that makes explicit the Goldstone

modes associated with U(2) symmetry breaking: we set

taσa = U † (t̃012 + t̃3σ3

)

U (4.2)

where U = exp
i
c
(t̃1σ1+t̃2σ2) and we pick a preferential gauge in which

(taσa)
′ = UtaσaU

† = t̃012 + t̃3σ3 (4.3)

(Aa
ασa)

′ = U(Aa
ασa)U

† − (∂αU)U † . (4.4)

In this gauge, the fluctuations t are diagonal and3

∂αt∂βt = (∂αt0∂βt0 + ∂αt3∂βt3)12 + (∂αt0∂βt3 + ∂αt3∂βt0)σ3

∂αt [Aβ , t] = 2it3∂αt0
(

A2
βσ1 − A1

βσ2

)

− 2t3∂αt3
(

A2
βσ2 + A1

βσ1

)

[Aα, t][Aβ , t] = 4(t3)2
(

−A1
αA1

β − A2
αA2

β + i
(

A2
αA1

β − A1
αA2

β

)

σ3

)

(4.5)

with similar expressions holding with various t3 are replaced by the v.e.v. c. Now we

redefine the gauge fields so as to absorb the v.e.v. c by setting Ai
α = 1

2c
Ãi

α for i = 1, 2.

Substituting these expressions and taking the large c limit one obtains to leading order

G̃αβ = ηαβ + F 0
αβ12 + F 3

αβσ3 + (∂αt0∂βt0 + ∂αt3∂βt3)12 + (∂αt0∂βt3 + ∂αt3∂βt0)σ3
(

∂αt0(A2
βσ1 − A1

βσ2) + (α ↔ β)
)

+ i
(

∂αt3(A1
βσ1 + A2

βσ2) − (α ↔ β)
)

+(A1
αA1

β + A2
αA2

β)12 − i
(

A2
αA1

β − A1
αA2

β

)

σ3 (4.6)

The fields Ai
α, i = 1, 2 are non-propagating to lowest order in a 1/c expansion and a

consistent solution of their equations of motion is to set A1
α = A2

α = 0. The limit of large c

3We drop the prime sign from the gauged form of A′

α and the tilde on t̃0, t̃3.
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corresponds to considering the two coincident D8-branes as being separated by a distance

that is large compared to the string length
√

α′.

We use this and redefine the field strengths and scalar fields associated to each brane

as F 1
αβ = F 0

αβ +F 3
αβ , F 2

αβ = F 0
αβ −F 3

αβ and φ1 = t0 + t3, φ2 = t0 − t3. Then, in group space

the matrix G̃αβ reduces to

G̃αβ =

(

ηαβ + F 1
αβ + ∂αφ1∂βφ1 0

0 ηαβ + F 2
αβ + ∂αφ2∂βφ2

)

hence,

√

−det(G̃αβ) =





√

−det(ηαβ + F 1
αβ + ∂αφ1∂βφ1) 0

0
√

−det(ηαβ + F 2
αβ + ∂αφ2∂βφ2)





and finally defining G̃1
αβ = ηαβ + F 1

αβ + ∂αφ1∂βφ1 and G̃2
αβ = ηαβ + F 2

αβ + ∂αφ2∂βφ2 we

find that the action becomes

S = −
√

2πa

∫

d10x

(

V (f1)f
′
1

√

−det(G̃1
αβ) + V (f2)f

′
2

√

−det(G̃2
αβ)

)

. (4.7)

After performing the usual change of variables and using the descent relation between T9,

T8 and V , we recognize this as being the U(1) ⊗ U(1) symmetric abelian DBI action for

two separate D8-branes.

5 Conclusions

In this paper we have considered the generalization of Sen’s tachyon condensation mech-

anism to the formation of two coincident BPS D8-branes on the world volume of tachyon

kink-like configurations of two coincident non-BPS D9-branes. We found a natural exten-

sion of Sen’s regularization of the singular tachyon kink profile, to the case of U(2) tachyon

valued field in the latter theory. What is apparent is the very different properties of the Str

vs Tr prescription in taking the gauge trace in the non-abelian, non-BPS DBI action. The

former leads to a series of very complicated terms that mix DµT, Fµν and more problem-

atically individual T in the tachyon potential V (T ). In particular, the latter consequence

of taking Str over gauge indices makes it very difficult to see tachyon condensation occur-

ring in a way that is calculable and which yields the Str prescription of the action of two

coincident BPS D8-branes.

Starting with the Tr prescription however, we have explicitly shown that tachyon

condensation gives rise directly to the BPS action of two coincident D8-branes. This stark

contrast between the Str and Tr prescriptions, parallels similar issues found by Garousi

in [16] regarding the existence (or not) of vortex solutions in brane-antibrane actions derived

from coincident non-BPS D9-brane actions with Tr or Str prescriptions.

Regarding further work in this area, firstly, it would be interesting to investigate non-

abelian tachyon condensation, along the lines presented in this paper, where one starts with

e.g. two coincident non-BPS Dp-branes with p < 9. Then one expects to find the action

of two coincident D(p − 1) BPS branes after tachyon condensation. The resulting action

– 12 –
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should presumably have the same structure as the one proposed by Myers [29]. Since the

latter action is obtained via T-duality of the coincident D9-brane action, understanding

the details of how non-abelian tachyon condensation works in this case would allow us

to see if T-duality ‘commutes’ with it. On the other hand, since the Myers action has a

Str prescription, it is by no means obvious how one may realize such actions through the

process of non-abelian tachyon condensation. Secondly, there are obvious extensions of our

results to the case of multiple coincident non-BPS D9-branes and tachyon condensation

leading to the action of multiple coincident BPS D8-branes. Finally, it would be interesting

to show how one can inherit the correct Wess-Zumino terms for the BPS D(p − 1) branes

from those that are part of the non-BPS action recently proposed in [32, 33]. We hope to

report further on these questions in the future.
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